SOLUTION OF ONE PROBLEM OF CONTROL CONNECTED WITH THE REDUCTION OF
IRON-ORE PELLETS
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The article examines the mathematical model of the process of heating iron-ore
pellets, and a gas blown through them, by high-frequency currents. On thebasis
of the solution of the problem of control it becomes possible to evaluate the

efficiency of the heater and to .choose the optimum operating conditions for it.

1. The technology of reducing iron-ore pellets to iron has been widely investigated in
recent years; this technology is based on high-frequency currents for heating to very high
temperatures a medium of two components, the pellets and the reducing gas blown through them

[11.

On the basis of a mathematical model the present article solves the problem of determin-
ing the current intensity in the inductor ensuring the specified heatingregime. The solution
of this problem of control, obtained by methods analogous to those of [2, 3], makes it possi-
ble to automate the procedure of the mathematical modeling of the process on a computer. We
present the results of the calculation of the heating in dependence on the geometric and dy-
namic parameters, on the basis of which an evaluation of the optimum regime can be obtained.

2. The technological process can be carried out in an installation whose geometric con-
figuration is shown in Fig. 1. The installation consists of a central "active" zone of cylin-
drical shape in which hydrogen and the charge move in opposite directions, the charge con-~
sisting of iron-ore pellets. We denote the speed of the charge v, the speed of the gas Vg~
This zone is encircled by an inductor through which the high-frequency current Iel®t flows.
The entire structure is enclosed in a jacket whose purpose is shielding.

The electromagnetic field induced by the high-frequency currents penetrates into the
"active" zone and gives rise to Foucauld currents. These currents cause the pellets to be-
come hot, and they in turn transmit their heat to the gas that is blown through. We point
out that the installation in question may be used both for heating gas (here it is expedient
to put v, = 0) and for reducing pellets to pure iron.

In the formulation of the mathematical model of heating we use spatially averaged for-
mulas for the effective electromagnetic and thermophysical parameters of the medium [1], and
also experimental data, taking into account the dependence of all the parameters on the tem-
perature. Thus we will regard both phases of the medium as "interpenetrating."

Here c., Pg» Cgs and p, are the heat capacities and densities of the solid porous phase
and the gas, respectively; u and w are their respective temperatures; k is the effective ther-
mal conductivity of the examined medium; e is a coefficient of the porous solid phase. We
neglect the thermal conduction of the gas compared with the heat transfer, and then the steady
thermophysical process is described by the following system of nonlinear equations in cylin-
drical coordinates:
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Here, ay is the coefficient of mutual heat transfer between the phases, depending on the
speed of the gas, W/m3-°C,7c is the coefficient of convectiwe heat transfer with the environ-
ment, W/m**°C; o is the Stefan—Boltzmann constant, the coefficient of ideal radiative heat
exchange, W/m**°C*; § is the degree of blackness cf the body.

The density of the heat sources is expressed by the formula q = 0.5x(u) |E|?, where (u)
is the effective conductivity of the medium, and E, the sole nonzero angular component of
the amplitude of the electric field E = {0, E, 0}, is determined by the associated system of
equations:

(e Lem) (L
o \ rp@ or 02(p(u) 62) foph (W E =0, 0<r <R,

El, g = El_gso+ E'(R, 2),

1 a d ‘
i o (Blero =5 Bl g — ionRHZ (R, 2),
3 (2)
0 j1_ 90 &E (
or (r ar « )) 922 0, R<r<a,
Elr.—-—-a = ~VED (a) 2)1

EIZ:D = ~E°(r, 0)’ Elz=H= _._EO(’., H)7 R<r<‘a,
Ei2=01H=0! 0<r<R,
El_,=0.

Bere, u = u(u) is the effective relative magnetic permeability of the active medium; E°
and Hy are the angular and the axial components, respectively, of the electromagnetic field
created by the inductor in the free space with the specified current intemnsity 1. We point
out that the boundary conditions on the surface of the jacket correspond to ideal shielding
of the working region.

The field of the inductor — a terminal solenoid — permits the explicit expression of
[4] which we used in the calculations. (The inductor was approximated by coaxially arranged
turns with current I.)

3. The problem (1)-(2) determines algorithmically the temperature and electrical fields
for any specified current in the inductor. The corresponding algorithms are based on the
theory of difference schemata [5]. The differential operators with the associated boundary
conditions contained in (1), (2) are approximated on appropriately chosen grids by the dif-
ference operators M and N with second order of accuracy.
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Fig. 2. Diagram of the energy balance in
steady-state regime: I) introduced energy;
I1) losses in the inductor; III) heat losses
via the wall; IV) useful energy of the heated

1 ; | @ gas.
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The solution of the nonlinear system 51)—(2) was found in an iteration cycle analogous
to 6, 71: ECSH) . NiE, u(8), w(s)] =0, ulst?) y(s+) . Mlu,w, E(B+)} =0, ul®) =z 0, w(®) =
0, s =0, 1, .... The system of difference equations M[u, w, E(s+1)] = 0 u3s solved at each
step of the iteration process by Siedel's method; the system N[E, u(S), w(S 1] = 0 was solved
by the method of simple iteration [8]. The method of simple iterations was used in view of
the complex nature of the matrix of the difference system of equations approximating (2).

4. As object of the control of the process we introduce the requirement that the tempera-
ture of the heated gas at the outlet from the system be close to the specified temperature
ug = 950°C. The thermal state of the gas at the outlet will be characterized by the mean
temperature:
_ R
w = 25t Y w|,_yrdr  (nR%)L
0

The value w = w(I) is algorithmically determined by the difference operator (1)-(2) and
the quadrature formula of rectangles for each current intensity I and set of other parameters
of the system. Then the inverse problem of control reduces, analogously to [2, 3], to the
selection of values of I from the set of practical equivalence:

lw (1) — 1 < 8, A (3

where § is the specified allowance. Since w(I) is continuous and monotonic, this problem is
well posed in the extended sense [3].

I is sought by the method of chords for the equation w(l) = ug with the iteration dis-
continued when the specified accuracy 6 is attained [7]. The initial approximation is chosen
in analogy to [2, 3] with the aid of the formula

[ = 08111 + (g — w (0))/(w (1) — @ ()],

where 1(°) may be specified arbitrarily in accordance with the order of the sought magnitude.
We point out that for solving the problem (3) with § = 40°C, 2-4 iterations suffice, as a
rule.

5. Let us now evaluate the effectiveness of the investigated system when it is a gas
heater (v, = 0).

As control function we adopt I = I(w, ay), where w is the current frequency in the induc-
tor; oy is the internal heat-transfer coefficient between the phases which depends on the size
of the pellets. The conditions of control with the specified speed of the gas and the geo-
metric parameters of the installation are characterized by the value of %, and we will exam—
ine two cases: %= 0 (ideal heat insulation of the active region) and x= 15 W/m?-°C.

We will characterize the effect of control 1) by the function w(I) and also by the ex-
tremal values of the temperature le=H(Wmax and wpjin); 2) by the temperature and the position
of the maximally heated point of the charge (umax, Tps, zn); 3) by the efficiency n of the in-
stallation. .

In calculating the efficiency, we proceed from the diagram of the energy balance pre-
sented in Fig. 2, which is correct since the process is steady.

The energy accumulated by the gas is

R R
g = 2n '05. (L‘g p.gvgsw)lz:Hrdr—— 2n (5 (cg pgvgew)]:ordr,
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Fig. 3. Dependence of the effective characteristics of the medium
on the temperature: k(u), W/m+-°C; A(u), Q= 'em~'; u, °C.

Fig. 4. Dependences of the current intensity in the inductor and
of the efficiency of the installation on the frequency of the cur-
rent: 1) %= 0, ay = 10“ 2) 15 and 10“. I, A; n, %; w, kHz.

the energy lost through heat transfer of the active medium with the environment is

%——2nRjk———, dz,

ir=R

the losses in the inductor are €5 = 0. 5Rj 1?, where the resistance of the inductor is Ry
pLi/Si = 2.484°107% @ (p is the re31st1v1ty of copper; Li is the total length of the 1nduc—
tor bus; S is its cross section).

Obviously, the energy release inthe charge is

H R
qz%jﬂjﬂn&ﬁ=ﬁ+%
b9

Thus, & ¢
=—1  1009% = —2.100 %.
" €+ &+ & ’ & - g, %

Numerical experiments were carried out for an installation with the parameters R =
0.125m, a=0.45m, H=1.15m, L = 0.7 my h = 0.5m, and D = 0.2 m (see Fig. 1). The
dependences k(u), u(u), and A(u) obtained by graphic interpolation of the experimental data
are shown in Fig. 3. In the system (1) € = 0.4; v = 03 ccp. = 3.588° 10° wW/m>-°C; Vg = 1.019
m/sec; cgpg = 560 W/m?-°C; wg = 500°C; & = 0; ug = 20°C; u, = 40°C.

The values of the outlet characteristics of the heated gas in dependence on the variable
parameters are presented in Table 1, from which it can be seen that in the mentioned range ay
has little influence on the effect of heating.

Figure 4 expresses the dependences I(w) and n(w) for the variants with == 0 and x# O.
It may be noted that with increasing frequency of the current in the inductor n - n, i.e.,
the efficiency when there are no losses in the inductor. Already at a frequency of 2.4 kHz
n and n are fairly close to each other. Also noticeable is the substantial influence of the
level of heat insulation % on the controlling and output characteristics of the installatiom.

Figure 5 shows the density distribution of the heat sources characteristic of all vari-
ants and the behavior of the temperature fields when w = 2.4 kHz. It can be seen that in dis-
tinction to heating in a purely metallic medium, the skin effect is very slight. Correspond-
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TABLE 1. Input and Output Parameters of the Operation of the
Installation in Different Regimes

Gas Gas Charge
S o v
SN N I U . :
T A A 8 g £ g % g |l =l =
3 | §NE iNE R EY i 3E> . 53: i N = W w 13 =
1 103 0 {1035] 985 1000 {0,125} 953 0 1078 [0,125{0,767} 100 | 78,2
i i0* 0 110661985 990 {0,125] 974 0 1601 10,125;0,894 1 100 | 77,2
1 168 15 116881 960 ¢ 1623 0 877 10,125 1326 10,09 [0,639]31,8] 26,1
i 3 15 117211947} 1973 0 834 [0,125; 1188 10,09 10,767 33,1| 26,6
2.4 (g 0 4409751 930 10,1251 642 0 11067 10,125]0,767} 100 | 92,0
2.4 13 ad 423 C12% 016 10,125% 90} 0 927 10,12510,894 190 1 92,2
Va8 15 | 7257848 1011 G 865 10,125] 1323 {0,09 |0,639]31,3| 30,1
2,4 10 15 1 7211923 1048 U 810 10,125( 1157 | 0,09 |0,767132,4 31,1
10 138 0 150! 6731 283 10,125 940 0 1060 :0,12510,7671 100 | 100
3 1o 0 1431952 957 | 0,125} 940 0 966 |0,12510,854| 100 | 100
tu 108 15 | 264 9541 1014 0 875 [0,125}1 1282 {0,09 |0,639]30,4| 30,4
HU It 15 252)939 1054 0 819 10,125| 1178 |0,09 |0,767]31,11 31,1
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ingly, with the current intensities chosen by us the medium is heated through to the required
temperature (v1000°C). .

It may also be noted that in the specified range of values of the parameter of internal
heat transfer ay the heat transfer from the charge to the gas is very intense so that the tem~
perature curves of the gas and of the charge do not differ very much, and they naturally ap-
proach each other with increasing ay.

The results presented here and in Table 1 permit the assumption that the longitudinal
dimensions of the heater may be reduced without loss of heating effect (with % # 0 there is
a marked maximum of the temperature curves which is situated at some distance from the bound-
ary of the working zone. (When ® = 0, the behavior of the temperature curves is closer to
monotonic.)

Thus the mathematical modeling of heating gas in a special heater, carried out on the
basis of the solution of the problem of control, makes it possible to evaluate the effective-
ness of the installation under examination, whichmay also be an element of a reduction set,
and it is also possible to choose the optimum operating regime of the heater.

In conclusion the authors express their gratitude to Academician A. N. Tikhonov for his
useful review.
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N U~

SOME GENERALIZATIONS OF THE THEORY OF OPTIMIZATION OF CASCADE THERMOELECTRIC
COOLING UNITS

V. A. Semenyuk - UDC 537.322

The optimal conditions are generalized, taking account of the irreversible losses
accompanying thermoelectric cooling.

Earlier [1], the problem of optimization of a thermoelectric cooling unit was solved for
the case when there are no irreversible losses associated with nonideality of the electrical
contacts and external heat inflows. The conditions for a minimum of the functional u = Qh/Qc
or the equivalent additive functional

N . N .
J=Zln41m—21ﬂ40m (1)
were obtained, taking account of the temperature dependence of the parameters of the thermo-~
electric materials.

The mathematical model proposed in [1] is now corrected for the case when the thermoele-
ment junctions are of finite electrical resistance. The expressions for the heat-flux den-
sities at the boundaries of the k-th cascade take the form

om = 0.5[¢ (%) + G (&) + (iF + )R], (2)
Gim = 0.51qn (¥h1) + Go (1—1) — (&% + P R.L. (3

All the remaining relations in [1] are retained, but the derivatives BJ/Bik’P in the
equations for the optimal current densities are no longer equal to zero. Taking account of
Egs. (1)-(3), it is found that in the general case

aJ 1- 10
= —BR ). 4

din ‘Ngtn | gin ()
where B = 1 when sg = sg(ig = i%) and 8 = 1/2 when the parameters s, and sp vary independent-
ly.

The appropriate analysis shows that when R. # 0O and there are no constraints on the
longitudinal dimension of the apparatus, the coordinates x, k = 1, ..., N, must be indeter-
minably large, i.e., there is no optimal sequence Iy. In practice, this means that the
lengths of all the thermoelements must be equal to some limitingly large dimensions compatible
with the specified size of the device, and hence the condition in Eq. (14) of [1] may be elimi-
nated, as before. '

Now consider the case when there are heat inflows from the surrounding medium. Heat

transfer occurs on the free part of the heat-transfer surface and on the side surfaces of the
cascades. Below, no account is taken of the lateral heat inflows; instead, it is assumed
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