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The article examines the mathematical model of the process of heating iron-ore 
pellets, and a gas blown through them, by high-frequency currents, On the basis 
of the solution of the problem of control it becomes possible to evaluate the 
efficiency of the heater and to choose the optimum operating conditions for it. 

i. The technology of reducing iron-ore pellets to iron has been widely investigated in 
recent years; this technology is based on high-frequency currents for heating to very high 
temperatures a medium of two components, the pellets and the reducing gas blown through them 
[1]. 

On the basis of a mathematical model the present article solves the problem of determin- 
ing the current intensity in the inductor ensuring the specified heating regime. The solution 
of this problem of control, obtained by methods analogous to those of [2, 3], makes it possi- 
ble to automate the procedure of the mathematical modeling of the process on a computer. We 
present the results of the calculation of the heating in dependence on the geometric and dy- 
namic parameters, on the basis of which an evaluation of the optimum regime can be obtained. 

2. The technological process can be carried out in an installation whose geometric con- 
figuration is shown in Fig. i. The installation consists of a central "active" zone of cylin- 
drical shape in which hydrogen and the charge move in opposite directions, the charge con- 
sisting of iron-ore pellets. We denote the speed of the charge Vc, the speed of the gas vg. 
This zone is encircled by an inductor through which the high-frequency current Ie i~t flows. 
The entire structure is enclosed in a jacket whose purpose is shielding. 

The electromagnetic field induced by the high-frequency currents penetrates into the 
"active" zone and gives rise to Foucauld currents. These currents cause the pellets to be- 
come hot, and they in turn transmit their heat to the gas that is blown through. We point 
out that the installation in question may be used both for heating gas (here it is expedient 
to put v c = 0) and for reducing pellets to pure iron. 

In the formulation of the mathematical model of heating we use spatially averaged for- 
mulas for the effective electromagnetic and thermophysical parameters of the medium [I], and 
also experimental data, taking into account the dependence of all the parameters on the tem- 
perature. Thus we will regard both phases of the medium as "interpenetrating." 

Here Cc, Pc, Cg, and pg are the heat capacities and densities of the solid porous phase 
and the gas, respectively; u and w are their respective temperatures; k is the effective ther- 
mal conductivity of the examined medium; ~ is a coefficient of the porous solid phase. We 
neglect the thermal conduction of the gas compared with the heat transfer, and then the steady 
thermophysical process is described by the following system of nonlinear equations in cylin- 
drical coordinates : 

vc(l_e(r))cc(U)Pc(U) au I a ( ~I 0 ( 0u ) a-G- - ~v (N (~))(u - ~,) + - - - -  rk (~) + - E  k ( u ) - E  + q = o, 
r Or 

aw 
--Vg(~)~(r)~ (~,)pg(~,) -Ez + ~(Vg(~))(u ~) = o, 

ou (1) 
wl~_=o = w~; ,~olimrk(u) T = O, 

M. V. Lomonosov Moscow State University. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 47, No. 6, pp. 971-977, December, 1984. Original article submitted August 3, 1983. 

0022-0841/84/4706- 1449508.50 �9 1985 Plenum Publishing Corporation 1449 



g.- 

0ooo i / -  
o o o o  [ 

o o o  

o o o o  
o o o  

o o o  

o o o  

2D ('~ 

ff 

\ 

Fig. i. Geometric configuration of the 
installation: I) charging; II) the 
charge and the gas blown through it; 
III) inductor; IV) jacket; V) gas being 
blown through. 

art ] 
--h (u) u, [~lr= a 

ul,=v. = u~ for v e  4= O, Ou = 0 for 
" OZ Z . ~ H  

= x ( u - -  uo) + 8a (u~ - -  u~), 

V c = O. 

Here, ~V is the coefficient of mutual heat transfer between the phases, depending on the 
speed of the gas, W/mS.~ ~ is the coefficient of convectiwe heat transfer with the environ- 
ment, W/m2"~ ~ is the Stefan--Boltzmann constant, the coefficient of ideal radiative heat 
exchange, W/m2"~ ~ is the degree of blackness of the body. 

The density of the heat sources is expressed by the formula q = 0.5%(u) iEI 2, where%(u) 
is the effectiveconductivity of the medium, and E, the sole nonzero angular component of 
the amplitude of the electric field E = {0, E, 0}, is determined by the associated system of 
equations: 

o ( i  o ) o(1 ) 
Or rl~ (u) Or (rE) q- ~ z  ~ (u) Oz - -  io~i*os (u) E = O, 0 < r < R, 

EI,=R_ o = El~=s+o + Eo (R, z ) ,  

1 0 0 ~ 
,, ~ i  0 F (u) ur (rE)!~=a-~ =--&r (rG!~=a+o co~oRl-l= (R, z), 

O (rE) v = 0 ,  R < r < a ,  
Or \ r or I Of- 

Et,=~ = ~E~ z), 

El~=o = - - E ~  0), E l f=H=--EO(r ,  H), R < r < 'a ,  

E l ~ o l u =  O, O < r < R ,  

El,= o = O. 
Here, ~ = U(u) is the effective relative magnetic permeability of the active medium; E ~ 

and R ~ z are the angular and the axial components, respectively, of the electromagnetic field 
created by the inductor in the free space with the specified current intensity I. We point 
out that the boundary conditions on the surface of the jacket correspond to ideal shielding 
of the working region. 

The field of the inductor -- a terminal solenoid -- permits the explicit expression of 
[4] which we used in the calculations. (The inductor was approximated by coaxially arranged 
turns with current I.) 

3. The problem (1)-(2) determines algorithmically the temperature and electrical fields 
for any specified current in the inductor. The corresponding algorithms are based on the 
theory of difference schemata [5]. The differential operators with the associated boundary 
conditions contained in (i), (2) are approximated on appropriately chosen grids by the dif- 
ference operators M and N with second order of accuracy. 
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Fig. 2. Diagram of the energy balance in 
steady-state regime: I) introduced energy; 
II) losses in the inductor; III) heat losses 
via the wall; IV) useful energy of the heated 
gas. 

The solution of the nonlinear system (1)-(2) was found in an iteration cycle analogous 
to [6, 7]: E(S+~): N[E, u(S), w(S)] = O~ ~(s+~), w(S+~): M[u,w, E(S+~)J = 0, u(~ ~ 0, w(~ 

0, s = 0, i, .... The system of difference equations M[u, w, E(S+~)] = 0 w s solved at each 
(s) (s~ step of the iteration process by Siedel's method; the system N[E, u , w ] = 0 was solved 

by the method of simple iteration [8]. The method of simple iterations was used in view of 
the complex nature of the matrix of the difference system of equations approximating (2). 

4. As object of the control of the process we introduce the requirement that the tempera- 
ture of the heated gas at the outlet from the system be close to the specified temperature 
u H = 950~ The thermal state of the gas at the outlet will be characterized by the mean 
temperature: 

R 

: 2a .f wl*=Hrdr (aR~)-i" 
0 

The value w = w(1) is algorithmically determined by the difference operator (1)-(2) and 
the quadrature formula of rectangles for each current intensity I and set of other parameters 
of the system. Then the inverse problem of control reduces, analogously to [2, 3], to the 
selection of values of I from the set of practical equivalence: 

l~(~-ud~<a, (3) 

where 8 is the specified allowance. Since w(1) is continuous and monotonic, this problem is 
well posed in the extended sense [3]. 

I is sought by the method of chords for the equation w(I) = UH with the iteration dis- 
continued when the specified accuracy 8 is attained [7]. The initial approximation is chosen 
in analogy to [2, 3] with the aid of the formula 

I '~ = 0.5/`0' [I -§ (u~--  ~ (O))/(w (t '~ --- ~ (O))l, 

where I (~ may be specified arbitrarily in accordance with the order of the sought magnitude. 
We point out that for solving the problem (3) with 8 = 40~ 2-4 iterations suffice, as a 
rule. 

5. Let us now evaluate the effectiveness of the investigated system when it is a gas 
heater (v c = 0). 

As control function we adopt I = I(m, eV), where m is the current frequency in the induc- 
tor; ~V is the internal heat-transfer coefficient between the phases which depends on the size 
of the pellets. The conditions of control with the specified speed of the gas and the geo- 
metric parameters of the installation are characterized by the value of x, and we will exam- 
ine two cases: ~= 0 (ideal heat insulation of the active region) and x = 15 W/m2"~ 

We well characterize the effect of control i) by the function w(I) and also by the ex- 
tremal values of the temperature Wlz=H(Wma x and Wmin) ; 2) by the temperature and the position 
of the maximally heated point of the charge (Umax, rm, Zm) ; 3) by the efficiency ~ of the in- 
stallation. 

In calculating the efficiency, we proceed from the diagram of the energy balance pre- 
sented in Fig. 2, which is correct since the process is steady. 

The energy accumulated by the gas is 

N R 

0 o 
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Fig. 3. Dependence of the effective characteristics of the medium 
on the temperature: k(u), W/m.~ X(u), ~-1-m-~; u, ~ 

Fig. 4. Dependences of the current intensity in the inductor and 
of the efficiency of the installation on the frequency of the cur- 
rent: i) ~= 0, ~V = i0~; 2) 15 and i04. I, A; n, %; m, kHz. 

the energy lost through heat transfer of the active medium with the environment is 

~ = 2 ~ R [ k - - I  dz, 
~ !r=R 

t h e  l o s s e s  i n  t h e  i n d u c t o r  a r e  r : 0 - 5 R i  I 2 ,  w he r e  t h e  r e s i s t a n c e  o f  t h e  i n d u c t o r  i s  R i = 
PLi/S i = 2.484"i0 -S fl (p is the resistivity of copper; Li is the total length of the induc- 
tor bus; S i is its cross section). 

Obviously, the energy release inthe charge is 

Thus, 

H R 
% ~--- 2a~ ~f dz ~ q (r, z) rdr = el § e,+. 

0 0 

ea 100% = el 100%.  
e ~ + % + %  % + %  

Numerical experiments were carried out for an installation with the parameters R = 
0.125 m, a = 0.45 m, H = 1.15 m, L = 0.7 m, h = 0.5 m, and D = 0.2 m (see Fig. i). The 
dependences k(u), ~(u), and X(u) obtained by graphic interpolation of the experimental data 
are shown in Fig. 3. In the system (i) E = 0.4; v c = 0; CcP c = 3.588"106 W/mS'~ Vg = 1.019 

O m/see; Cgpg = 560 W/mS'~ Wg = 500~ ~ = 0; u~ = 20~ uo = 40~ 

The values of the outlet characteristics of the heated gas in dependence on the variable 
parameters are presented in Table i, from which it can be seen that in the mentioned range ~V 
has little influence on the effect of heating. 

Figure 4 expresses the dependences I(~) and n(~) for the variants with ~= 0 and ~ 0. 
It may be noted that with increasing frequency of the current in the inductor ~ ~ ~, i.e., 
the efficiency when there are no losses in the inductor. Already at a frequency of 2.4 kHz 
n and n are fairly close to each other. Also noticeable is the substantial influence of the 
level of heat insulation z on the controlling and output characteristics of the installation. 

Figure 5 shows the density distribution of the heat sources characteristic of all vari- 
ants and the behavior of the temperature fields when ~ = 2.4 kHz. It can be seen that in dis- 
tinction to heating in a purely metallic medium, the skin effect is very slight. Correspond- 
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TABLE i. Input and Output Parameters of the Operation of the 

Installation in Different Regimes 

14 

1 

2,4 
2,4 
I0 
lO 
1o 
Io 

I 

I0~ 0 10351985 
i0 "i 0 1066~ 985 
10a 15 16881900 
t5 ~ I5 11721 947 
10 a 0 " 4401 975 
I 0 -~ 0 420i 9 ! l 
11):~ 15 725 ~-g8 
i0 ~ 15 721; 923 
I 0 a 0 150! 973 
I04 0 1431 [)52 
]0 ~ 15 264 i 954 
l0 ~ 15 252i 933 

1 

Gas 

o 

IOOO 
990 

1023 
t073 
9~0 
916 

1011 
1048 
989 
957 

1014 
I054 

Gas Charge  

t 
l 0,125 0,767 0,125 953 0 1078 

0,~251 974 1001 0,125 0,894 
877 0 795 !326 0,09 0,639 

0 834 0:1-<]5 !188 0,09 10,767 

901 ofi25I 927 10, t25/0,894 
865 1303 0,09 i0,639 

IO,O9 10,767 810 [0'125! i 1157 
0,725 940 1060 0,12510,767 
0,125 940 966 0,12510,894 

0 ] 250 0,09 1 o, 639 
819 1178 0,09 [0,767 

100 78,2 
100 77,2 
31,~ 26,1 
30 26,6 

'0 92,0 
I90 92,2 
~1,; 30,1 
~120,d 31,1 

100 
100 100 
~0, -~ 30,4 
31,] 31,1 

Ioool / S ~ . , I  i ~ ,, 
" ~ . _ ~  ~ P---Az=o,5 
V- , 

500 "5"I0 at ~ " / / /  " Z = O 

, 

o o, o5 o,/ R=o/25 r 

Fig. 5. Dependences of the temperature 
of the charge (I), of the gas tempera- 
ture (2), of the density of the heat 
sources (W/m 3) (3) on the radius for 
different z; u, w, ~ r, m. 

ingly, with the current intensities chosen by us the medium is heated through to the required 
temperature (~I000=C). 

It may also be noted that in the specified range of values of the parameter of internal 
heat transfer ~V the heat transfer from the charge to the gas is very intense so that the s 
perature curves of the gas and of the charge do not differ very much, and they naturally ap- 
proach each other with increasing a V. 

The results presented here and in Table 1 permit the assumption that the longitudinal 
dimensions of the heater may be reduced without loss of heating effect (with • # 0 there is 
a marked maximum of the temperature curves which is situated at some distance from the bound- 
ary of the working zone. (When ~ = 0, the behavior of the temperature curves is closer to 
monotonic.) 

Thus the mathematical modeling of heating gas in a special heater, carried out on the 
basis of the solution of the problem of control, makes it possible to evaluate the effective- 
ness of the installation under examination, whichmay also be an element of a reduction set, 
and it is also possible to choose the optimum operating regime of the heater. 

In conclusion the authors express their gratitude to Academician A. N. Tikhonov for his 
useful review. 
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SOME GENERALIZATIONS OF THE THEORY OF OPTIMIZATION OF CASCADE THERMOELECTRIC 

COOLING UNITS 

V. A. Semenyuk UDC 537.322 

The optimal conditions are generalized, taking account of the irreversible losses 
accompanying thermoelectric cooling. 

Earlier [i], the problem of optimization of a thermoelectric cooling unit was solved for 
the case when there are no irreversible losses associated with nonideality of the electrical 
contacts and external heat inflows. The conditions for a minimum of the functional ~ = Qh/Qc 
or the equivalent additive functional 

N N 

J =  ]~ l n q ~ - -  ~ lnq~ (1) 
k = l  k = i  

were obtained, taking account of the temperature dependence of the parameters of the thermo- 
electric materials. 

The mathematical model proposed in [i] is now corrected for the case when the thermoele- 
ment junctions are of finite electrical resistance, The expressions for the heat-flux den- 
sities at the boundaries of the k-th cascade take the form 

q~m = 0.5 [qn (x~) + qp (X~--) + (i~ + i~) Re], (2) 
k q,~ = 0.5 [q. (x~_,) + qp (x~_,) - -  (i~ + i~) ~ol. (3) 

A l l  t h e  r e m a i n i n g  r e l a t i o n s  i n  [1 ]  a r e  r e t a i n e d ,  b u t  t h e  d e r i v a t i v e s  3 J / 3 i k , P  i n  t h e  
H 

equations for the optimal current densities are no longer equal to zero. Taking account of 
Eqs. (1)-(3), it is found that in the general case 

.~ =--~Rc + , (41 Otn,p 
where B i when s~ = k .k = Sp(l n = i ) and B = 1/2 when the parameters s n and Sp vary independent- 
ly. 

The appropriate analysis shows that when R c # 0 and there are no constraints on the 
longitudinal dimension of the apparatus, the coordinates Xk, k = i, ..., N, must be indeter- 
minably large, i.e., there is no optimal sequence I k. In practice, this means that the 
lengths of all the thermoelements must be equal to some limitingly large dimensions compatible 
with the specified size of the device, and hence the condition in Eq. (14) of [i] may be elimi- 
nated, as before. 

Now consider the case when there are heat inflows from the surrounding medium. Heat 
transfer occurs on the free part of the heat-transfer surface and on the side surfaces of the 
cascades. Below, no account is taken of the lateral heat inflows; instead, it is assumed 
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